Atmos. Chem. Phys. Discuss., 6, 3657–3685, 2006 www.atmos-chem-phys-discuss.net/6/3657/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License.

Importance of the surface reaction OH + Cl⁻ on sea salt aerosol for the chemistry of the marine boundary layer – a model study

R. von Glasow

Institute of Environmental Physics, University of Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany

Received: 15 February 2006 - Accepted: 8 March 2006 - Published: 10 May 2006

Correspondence to: R. von Glasow (roland.von.glasow@iup.uni-heidelberg.de)

ACPD

6, 3657-3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I ◆ ▶I

◆ ▶ Back Close

Full Screen / Esc

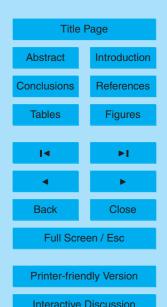
Printer-friendly Version

Interactive Discussion

Abstract

The reaction of the hydroxyl radical with chloride on the surface of sea salt aerosol producing gas phase Cl₂ and particulate OH⁻ and its implications for the chemistry of the marine boundary layer under coastal, remote, and very remote conditions have been investigated with a numerical model. This reaction had been suggested by Laskin et al. (2003) to play a major role in the sulfur cycle in the marine boundary layer by increasing the sulfate production in sea salt by O₃ oxidation due to the additional production of alkalinity in the particle. Based on literature data a new "best estimate" for the rate coefficient of the reaction was deduced and applied, showing that the additional initial sulfate production by this reaction is less than 1%, therefore having only a minor impact on sulfate production. Even though the gas phase concentration of Cl₂ increased strongly in the model the concentration of Cl radicals increased by less than 5% for the "best guess" case. Additional feedbacks between the cycles of chlorine and sulfur in the marine boundary layer are discussed as well as a two-stage acidification of large fresh sea salt aerosol.

1 Introduction


Aerosol particles play a key role in the climate system of the Earth because they can scatter radiation directly and influence the properties of cloud particles and therefore exert an indirect forcing on climate. Furthermore, they influence the hydrological cycle by changing cloud properties. Over clean oceans cloud condensation nuclei (CCN) are mainly sea salt and sulfate aerosols. The origin of sulfate particles in the marine boundary layer (MBL) is transport from continents and formation of new particles from sulfur-containing precursors. Apart from their own role as CCN, sea salt aerosol, which is mainly produced by bursting bubbles at the ocean surface (e.g. Woodcock et al., 1953), can also influence the chemical and microphysical properties of other aerosols by taking up and releasing chemically reactive compounds including sulfur and halogen

ACPD

6, 3657-3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

compounds.

The natural marine cycle of sulfur is dominated by the emissions of dimethyl sulfide (DMS) (see e.g. Charlson et al., 1987), which is produced by organisms in the oceans and subsequently emitted to the atmosphere where it is oxidized in the gas phase by OH, NO₃, CI, and BrO and in the aqueous phase by O₃. Sulfuric acid (H₂SO₄) is the only gas phase product of DMS that can form new aerosol particles whereas all other products only add to the mass of pre-existing aerosol (see e.g. Hoppel (1987) and discussion in von Glasow and Crutzen (2004)). Additionally, the presence of sulfate in particles often increases the hygroscopicity of many aerosols (e.g. Seinfeld and Pandis, 1998).

A key factor in determining the importance of sulfur particles on microphysical processes and climate feedbacks as suggested for example by Charlson et al. (1987) is the fraction of DMS-products that form new aerosol particles or lead to the growth of existing particles, potentially increasing their ability to form droplets. Sea salt particles are very soluble and, due to their relatively large size, have short lifetimes of 1–2 days. Therefore the uptake of DMS-derived sulfur products by sea salt particles can be viewed as a short-cut in the marine sulfur cycle because of the rapid deposition of these compounds back to the ocean (e.g. von Glasow and Crutzen, 2004). Furthermore the change in hygroscopicity due to uptake of sulfate is small for sea salt.

 SO_2 is a product of the oxidation of DMS. The fate of SO_2 depends on the abundance of the gas phase oxidant OH and the uptake to and oxidation in particles. The reaction rate coefficient for the aqueous phase oxidation of S(IV) (= $SO_{2,aq} + HSO_3^- + SO_3^{2-}$) by O_3 increases by about 6 orders of magnitude between pH 2 and 6 making it only important for pH values greater than 6 (e.g. Seinfeld and Pandis, 1998). The pH of freshly emitted sea salt aerosol is close to that of sea water of about 8.2 (e.g. Riley and Skirrow, 1965). Due to the presence of HCO_3^- in sea water and therefore also in sea salt aerosol, the particle pH is buffered (see e.g. Chameides and Stelson, 1992), meaning that the uptake of acids changes the pH only after this buffer has been depleted. Until the particle is acidified, the reaction of $S(IV) + O_{3,aq}$ is very efficient and

ACPD

6, 3657-3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

constitutes a strong source for S(VI) (= $H_2SO_{4,aq} + HSO_4^- + SO_4^{2-}$) (e.g. Penkett et al., 1979; Hoffmann, 1986; Sievering et al., 1991). The production of non sea salt sulfate (nss- SO_4^{2-}) in this reaction and the uptake of other acids (HNO₃, HCI) lead to a decrease in the pH and the oxidation rate of S(IV) which is then dominated by H_2O_2 (e.g. Penkett et al., 1979) and the hypohalous acids HOBr and HOCI (Vogt et al., 1996). A detailed comparison of the different oxidation pathways in sea salt aerosol can be found in von Glasow et al. (2002b) and von Glasow and Crutzen (2004).

Direct and indirect determinations of the pH of super-micron particles which are usually dominated in the MBL by sea salt aerosol showed the following results: Hawaii, clean conditions 4.5–5.4 (Pszenny et al., 2004), Atlantic (50° N–17° S) 3.5–4.25 (Keene et al., 2005), Bermuda, (moderately polluted): 3.5–4.6 (Keene and Savoie, 1998, 1999; Keene et al., 2002), East Coast of US, (moderately to heavily polluted): 2.7–3.9 (Keene et al., 2004). As these are filter measurements, the sampling cannot separate single particles so that these numbers average over particles of different age and therefore different depletion of the bicarbonate buffer and chemical aging.

Recently it has been speculated by Laskin et al. (2003) that the reaction of gas phase OH with chloride on the surface of sea salt particles can lead to a significant delay in the acidification of sea salt particles by the production of alkalinity via the net reaction:

$$OH_{q} + CI^{-} \longrightarrow 0.5 CI_{2,q} + OH^{-}$$

$$(1)$$

This net reaction had been suggested by Knipping et al. (2000) based on variety of laboratory experiments, molecular dynamics, and kinetic modeling with the simplified system of pure NaCl particles. The enrichment of halides on the surface has further been investigated in molecular dynamic simulations by e.g. Jungwirth and Tobias (2001, 2002) and in the laboratory by e.g. Ghosal et al. (2000, 2005) and Liu et al. (2004). The focus of these papers was the release of Cl₂ to the gas phase. Laskin et al. (2003) could show the presence of elevated OH⁻ concentrations on the surface of NaCl particles that had reacted with OH.

ACPD

6, 3657-3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

The idea of Laskin et al. (2003) of the importance of Reaction (1) for the atmospheric sulfur cycle has been challenged by Keene and Pszenny (2004) based on their measurements of (bulk) aerosol pH and the neglection of acidity sources other than SO₂ by Laskin et al. (2003) and by Sander et al. (2004) based on considerations of uptake limitations for OH and the atmospheric conditions that Laskin et al. (2003) had chosen for their extrapolation. In their reply Laskin et al. (2004) stress that the proposed mechanism will not keep sea salt particles alkaline under all conditions but that it rather modulates the rate of titration of the alkalinity. They also mention the possibility of formation of OH at the particle surface from the photolysis of NO₃. Alexander et al. (2005) analyzed the isotopic signature of sulfate in the Indian Ocean which can be used to deduce the oxidation pathways. A comparison of their data with global model runs showed that including the alkalinity formation mechanism by Laskin et al. (2003) leads to large inconsistencies between model and field data, implying that Reaction (1) plays only a minor role for the sulfur budget in the Indian Ocean MBL.

Reaction (1) can only be of importance in regions where the gas phase acidity is high enough to eventually acidify the particles. In regions where this is not the case, i.e. where particles do not get more acidic than pH \approx 6, the oxidation of S(IV) by O $_3$ will always dominate, so that an additional source of alkalinity will have no effect. The focus of this study is the temporal evolution of the sea salt aerosol pH to be able to identify regions/conditions where Reaction (1) can have an effect by yielding "excess" nss-SO $_4^{2-}$ due to the production of additional alkalinity in the particles. In order to accomplish this, the change of the pH in fresh sea salt particles of different sizes that evolve in the presence of sulfate and aged sea salt particles is calculated with a numerical box model under conditions typical for coastal regions, the remote MBL, and the very remote Southern Ocean. Furthermore, effects on the sulfur cycle and the release of Cl $_2$ to the atmosphere are quantified.

In Sect. 2 the numerical model is described, whereas in Sect. 3 the effects on sea salt particle pH and the oxidation of sulfur and in Sect. 4 the effects on gas phase chlorine are discussed.

ACPD

6, 3657-3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

2 Model description and setup

For this study the model MISTRA (von Glasow et al., 2002a,b; von Glasow and Crutzen, 2004) was used which is a model of the MBL. It takes microphysical processes into account and focuses on the interaction of gas phase and particulate phase (sea salt and sulfate aerosol) chemistry. Photolysis rates are calculated online with the model of Landgraf and Crutzen (1998). The chemical mechanism contains the most important reactions of O, H, C, N, S, Cl, and Br both in the gas and particulate phase. MISTRA is a one-dimensional model, in this study, however, it was run in the box-model mode, initialized with data from the lowest level of 1-D runs that were used for a numerical spin-up of the system.

The standard approach in the model is to consider one bin for the chemistry of sulfate particles and a second one for sea salt particles. Especially in the case of sea salt this implies averaging over not only a range of particle sizes but especially particle ages. The pH – and therefore the chemistry – of sea salt particles is, as already mentioned. a strong function of time. As one focus of this paper is to investigate the influence of Reaction (1) on the pH, a way had to be found to explicitly take the particle age into account. To achieve this, a third chemical bin for fresh sea salt of a "discrete" radius was introduced which additionally allows to investigate the effect of particle size. This bin evolves in the presence of aged sulfate and sea salt particles and can, for example, also be acidified by HCl that had been released from older sea salt particles via acid displacement. The choice of the number and width Δr of this bin is important to ensure a realistic simulation. One cannot simply assume a particle density of 1 part. cm⁻³ for this size bin as this would drastically overestimate the total mass of sea salt for large radii and therefore change the chemistry completely. In principle Δr should be approaching zero in order to model particles of a discrete size, but technically the number of particles for $\Delta r \rightarrow 0$ equals zero for any given size distribution (e.g. Seinfeld and Pandis, 1998). The width of the radius bin was chosen as $\Delta r = 0.1 r$, tests with 2Δr showed hardly any impacts on the results whereas the choice of 3Δr resulted in

ACPD

6, 3657-3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

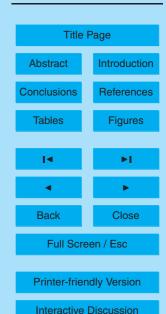
noticeable changes in the gas phase indicating that too much additional mass was present in this additional size bin. In the following, this third aerosol size bin is referred to as the "mono-disperse" sea salt aerosol bin. The number of particles in this bin was taken from the size distribution of the lowest layer of a 1-D run of MISTRA (z=5 m).

The rate coefficient of Reaction (1) is critical for this study. It depends on the transport of OH to the particle's surface and the reaction probability of OH with CI^- at the surface. The usual expression for the mass transfer coefficient k_t for non-reactive uptake of gas molecules to the surface of a particle is (Schwartz, 1986):

$$k_t = \left(\frac{r^2}{3D_g} + \frac{4r}{3\bar{\nu}\alpha}\right)^{-1},$$
 (2)

with the particle radius r, the mean molecular speed $\bar{v} = \sqrt{8RT/(M\pi)}$ (M is the molar mass), the accommodation coefficient α , and the gas phase diffusion coefficient D_g . D_g is approximated as $D_g = \lambda \bar{v}/3$ (e.g. Gombosi, 1994, p. 125) using the mean free path length λ . Gas phase diffusion is more important for larger particles, therefore it has to be taken into account in the discussion of sea salt aerosol which span the size range from about 100 nm to several $10\,\mu\text{m}$. The error in the reactive uptake rate coefficient when gas phase diffusion limitations are ignored is only about 30% for r=0.1 μ m and α =0.24 (110% for α =1), whereas it is already a factor of 2.6 (7.7) for r=0.6 μ m and a factor of 14.6 (57.1) for r=1 μ m. As in Reaction (1) the accommodation of OH is followed by reaction with Cl⁻, α has to be replaced with the reaction probability γ to get an expression for the reaction rate coefficient for Reaction (1).

Knipping and Dabdub (2002) re-evaluated the results from the laboratory study of Knipping et al. (2000) and suggested the following expression for the reaction probability for the net Reaction (1):


 $\gamma = 0.02 \gamma' [CI^-] = 0.04 [CI^-],$ (3)

ACPD

6, 3657-3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

where the concentration of chloride ions is given in $\operatorname{mol} I^{-1}$. For typical chloride concentrations in sea salt particles of about $6 \operatorname{mol} I^{-1}$ the resulting γ =0.24. The experiments of Knipping et al. (2000) were done with mono-disperse aerosol with radii of about 75 nm where gas phase diffusion is only weakly impeding the uptake of OH. The extrapolation of Laskin et al. (2003) assumed γ =1, also without taking gas phase diffusion limitations into account. Using a reaction probability of γ =1 without any restrictions assumes that every collision between an OH molecule and the particle surface leads to a reaction with CI⁻ independent of the CI⁻ concentration. Assuming that expression (3) gives the correct reaction probability if gas phase diffusion is unimportant, we can replace α in Eq. (2) with γ according to Eq. (3) to calculate the reaction rate including gas phase diffusion.

Throughout this paper the term "case" is used for the different assumptions about the surface reaction and the term "scenario" for the different initial and boundary conditions. The different cases are set up to explore the importance of gas phase limitation and the use of expression (3) versus a reaction probability of unity. The following cases are being explored in this paper:

- case 1: no surface reaction
- case 2: $\gamma = 0.02 \gamma' [\text{Cl}^-] = 0.04 [\text{Cl}^-]$, with gas phase diffusion limitation. This is considered to be the "best guess" case.
- case 3: γ =0.02 γ' [Cl⁻]=0.04[Cl⁻], no gas phase diffusion limitation as in Knipping and Dabdub (2002).
- case 4: γ =1, with gas phase diffusion limitation, all particular Cl⁻ is available for surface reaction.
- case 5: γ =1, no gas phase diffusion limitation, all particular Cl⁻ is available for surface reaction; same as in Laskin et al. (2003).

ACPD

6, 3657-3685, 2006

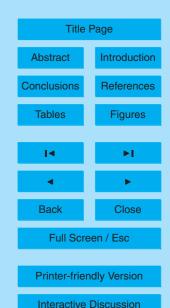
OH + Cl⁻ surface reaction

R. von Glasow

EGU

The following chemical scenarios for the background atmosphere in which the fresh sea salt particles evolve are used, the concentrations and mixing ratios of the main species are listed in Table 1:

- *Coastal*: This scenario is based on various data from the PEM-tropics campaigns (e.g. Gregory et al., 1997) to simulate semi-polluted air over the ocean, as is the case for example in coastal regions. The concentration of sea salt aerosol is $13 \,\mu \mathrm{g} \, \mathrm{m}^{-3}$, air temperature is $14 \,^{\circ} \mathrm{C}$.
- Remote MBL: With this scenario typical remote MBL conditions are simulated, the concentration of sea salt aerosol is $13 \,\mu \mathrm{g} \,\mathrm{m}^{-3}$, air temperature is $14^{\circ}\mathrm{C}$. It is based on various measurements, see von Glasow and Crutzen (2004).
- *Southern Ocean*: This scenario is meant to simulate the pristine regions of the MBL and is based on measurements from the Cape Grim Baseline Station (Ayers et al., 1995, 1997a,b, 1999; Monks et al., 1998, 2000). The concentration of sea salt aerosol is 34 μ g m⁻³, air temperature is 17°C.


All runs were made for relative humidities of 75% and for summer conditions in order to maximize [OH] and therefore the potential importance of Reaction (1). Model start is at local noon after a spin-up of one day of the 1-D model runs that were used for initialization and were integrated for 6 h. As Reaction (1) is dependent on photolysis to produce OH, no night time evaluation of this reaction is necessary. The focus of this study is the early evolution of fresh sea salt particles and in all presented runs the fresh sea salt particles get acidified within 6 h so that this duration of the model runs is sufficiently long. If the available gas phase acidity is not enough to deplete the bicarbonate buffer, the oxidation of S(IV) by ozone will always dominate, so there is no need to study the effect of additionally produced alkalinity via surface reactions under these conditions.

ACPD

6, 3657-3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

3 Effects on sea salt pH and the sulfur cycle

As already mentioned, the additional alkalinity produced in the surface reaction of OH with CI^- can extend the time during which rapid production of S(VI) via the reaction $S(IV) + O_3$ is important. Therefore, the timing of the acidification of the "mono-disperse" sea salt aerosol bin is critical for this process.

The time lag of acidification between the different cases with and the case without the surface reaction for the three scenarios as well as the amount of additional S(VI) that is produced before the particles get acidified, here taken to be the time when the pH remains almost constant, i.e. when the HCO_3^- buffer is depleted, are shown in Tables 2 and 3, respectively. Only for particles with radii greater than 1 μ m an effect can be seen in the time lag for acidification, it is strongest in case 5.

Figure 1 shows the evolution with time of [S(VI)], pH, [H $^+$], and the liquid water content in the "mono-disperse" sea salt aerosol bin for a radius of r=1 μ m. The very short delays in acidification is too small to be discernable on that plot. The amount of sulfate being produced during the acidification is almost the same, the proton concentration is only in case 5 different from case 1. Figure 2 shows the same for the remote MBL scenario, again no significant delay in acidification can be observed in any case, the difference in initial S(VI) production is only about 4% in case 5 and less than 1% or smaller in all other cases.

As the small changes are hard to read from Figs. 1 and 2, the difference of nss-SO₄²⁻ produced during the acidification compared to the case without the surface reaction is also shown in Table 3. It is obvious that the amount of this "additional initial nss-SO₄²⁻ production" is very small, in case 2, the "best guess", it is never more than 1% compared to the case without the surface reaction. Only in case 5 up to 11% additional nss-SO₄²⁻ is predicted; please remember that this case is ignoring gas-phase diffusion limitations and assumes that all particulate Cl⁻ is available for the surface reaction with a reaction probability of unity, therefore clearly overestimating the effect of the surface reaction. In summary, this shows, that the suggestion of Laskin et al. (2003) for the

ACPD

6, 3657–3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

relevance of Reaction (1) for the sulfur cycle in the MBL is clearly overestimating its importance.

A surprising feature is, that in the cases including the surface reaction the S(VI) concentration at the end of the model run is greater than in case 1 (see Figs. (1) and (2)). The increase is in general small but for case 5 it amounts to about 20%. This effect is relatively small in absolute terms (case 5: 2.9 pmol mol⁻¹, expressed as pseduo-gas phase mixing ratio), however, as very little particle mass is associated with the "mono-disperse" sea salt bin. The increase is caused by feedbacks between the cycles of halogens and sulfur. Due to the increase of reactive chlorine in the gas phase (see Sect. 4), the gas phase reaction DMS + CI is increased, yielding about 1.2, 0.2, and 2.8 pmol mol⁻¹ more SO₂ in case 5 in the scenarios, "coastal", "remote MBL", and "Southern Ocean", respectively. Furthermore, HOCI is increased in both the gas and aqueous phase, leading to an increase in the aqueous phase production of nss-SO₄²⁻¹ by reaction of HOCI with S(IV). Under some conditions, a decrease of the particle pH below the pH in case 1 (as explained below) causes the release of more bromine from the particles and the associated feedbacks with the sulfur cycle (see e.g. von Glasow and Crutzen, 2004).

Figure (2) and (3) also show that the proton concentration can increase above (and the pH decrease below) that of case 1, again most pronounced in case 5. The decrease of the pH in the "mono-disperse" sea salt aerosol bin below the value from the case without surface reaction never happens in the "coastal" scenarios, but in the "remote MBL" and "Southern Ocean" scenarios it happens in all cases. This effect is caused by feedbacks from the gas phase: the gas phase product of the surface reaction is Cl_2 which photolyzes rapidly to two chlorine radicals. Under non-polluted conditions most Cl radicals react with CH_4 yielding the acid HCl, as do most other reactions of the Cl radical. As the surface reaction is occurring not only on the "mono-disperse" sea salt aerosol but also on aged sea salt particles, most of the Cl_2 - and the resulting HCl - that stems from the surface reaction comes from older, acidified particles. Therefore the alkalinity produced in Reaction (1) can be exceeded by the uptake of the indirect

ACPD

6, 3657-3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

product of the surface reaction, HCI, that had been released from older particles. The net production of alkalinity can therefore be expressed by the number of the CI radicals produced from CI₂ that stems from the surface reaction that do not react (e.g. with CH₄) to yield the acid HCI in the gas phase.

In coastal regions the fraction of CI radicals that do not yield HCI upon reaction – for example simple alkenes and some biogenic hydrocarbons (Finlayson-Pitts and Pitts, 2000) – is higher than in other marine regions. For the discussion of sea salt acidification, this is, however, only of limited importance, as in these regions usually enough gas phase acidity from anthropogenic sources (e.g. NO_x or SO_2 emissions) is available. Exceptions might be regions where strong alkaline dust plumes are mixed with air masses containing high loadings of e.g. alkenes or biogenic VOCs. In the coastal scenarios presented here, the gas phase acidity is always high enough to rapidly acidify the sea salt particles.

In all model runs with "mono-disperse" sea salt aerosol of r=5 \(\mu \) the particles get acidified in two steps (see Figures 3 and 4), which is mainly caused by the large mass of the individual particle. Initially, the S(IV)-oxidation and H⁺ production rates are about constant until the HCO₃ buffer is depleted to about 10⁻³ of its initial concentration (in Fig. 4 after about 170 min.). Then the pH starts to change rapidly - the first step in the acidification – which is drastically slowing down both the S(IV)-oxidation and H⁺ production rates. Even though the reaction rate of S(IV) with O₃ is reduced, it is still fast enough to dominate the acidification until finally [HCO₃] has been reduced to about 10⁻⁵ of its initial value (in Fig. 4 after about 207 min), at which point [HCO₃] and [H⁺] remain constant. Now, the particle is roughly in equilibrium with the gas phase and no further drastic changes in the pH occur. Under the conditions of the scenarios described in this paper, the acidification of the particle is dominated by sulfate production, the uptake of HNO₃ plays only a minor role. Note, that for each molecule of SO_{4}^{2-} , which is the dominant S(VI)-species under these conditions, being produced from $SO_{2,aq}$, two protons are released. Due to their smaller mass, the absolute amount of HCO₃ in smaller particles is a lot less, so that the decrease of [HCO₃] of 10⁻³ to

ACPD

6, 3657-3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

EGU

10⁻⁵ of its initial value occurs so rapidly that no stepwise acidification can be observed. As already mentioned in the introduction, Laskin et al. (2004) suggested, based on Salvador et al. (2003), that a possible surface enrichment of NO₃ might provide an in situ source for OH formation through photolysis thereby circumventing gas phase diffusion limitations during uptake for OH. The aqueous phase photolysis of NO₃ produces not only OH but also OH which would neutralize the proton that was released during dissociation of HNO₃. This implies that the surface reaction of OH with Cl⁻ would be a net source of alkalinity. The concentration of NO₃ in ocean water is only about 10⁻⁶ mol I⁻¹, too small to play any role in airborne sea salt aerosol, therefore the HNO₃ has to come from the gas phase. Then it is also being subjected to gas phase diffusion limitations during uptake, which in this case, however, is not important as the photolysis of NO_3^- is rather slow (J \approx 4×10⁻⁷ s⁻¹), about a factor of 1/1500 slower than uptake (calculated for r=1 μ m). Therefore even a possible increase in the quantum yield of NO₂ due to a reduced "cage-effect" at the surface would not make this reaction fast enough to be of importance in the early stages of aerosol acidification. Note, that a more recent study showed that contrary to the earlier expectations, NO₃ does not segregate to the surface but remains in the bulk (M. Roeselová, personal communication and Dang et

4 Effects on the chlorine cycle

al., 2006).

So far, mainly the aqueous phase products and consequences of Reaction (1) have been discussed. The gas phase product as measured by Knipping et al. (2000) is Cl₂ which rapidly photolyzes to two Cl atoms. Remember that Reaction (1) occurs during daytime only. The main interest in gas phase chlorine in the MBL is for the acidity budget (HCl), the production of HOCl for the aqueous phase oxidation of S(IV), and the oxidation of CH₄, some higher organics and DMS by the chlorine atom.


In the model the increase in gas phase Cl_2 is large, between several ten percent

ACPD

6, 3657-3685, 2006

OH + Cl⁻ surface reaction

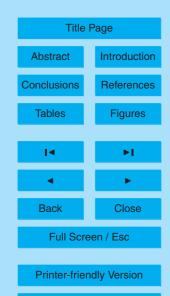
R. von Glasow

EGU

and a factor of 260 in the scenarios discussed here (see Table 4 and Fig. 5) but the mixing ratio remains in all cases below 1 pmol mol⁻¹. This increase, however, is not reflected in a corresponding increase in the CI atoms which, as already mentioned, is the most relevant and reactive inorganic chlorine species; for the best-guess case 1 the increase is below 5%. The CI concentration is on the order of 10⁴ molec cm⁻³ for all cases including the one without the surface reaction, which is consistent with most, but not all determinations of chlorine atom concentrations in the MBL (e.g. Wingenter et al., 1996, 1999; Singh et al., 1996), which are all indirect. The reason for this seeming mismatch in the behavior of CL₂ and CI is that in the model Cl₂ is only a minor source for CI atoms, photolysis of BrCI and HOCI and in the coastal scenarios also the reaction of HCI with OH are more important. Therefore it can be concluded that the impact of Reaction (1) on the chlorine budget in the MBL is indeed present but limited. Note, that most additional chlorine in the model stems from the release of the aged sea salt particles and not the "mono-disperse" fresh sea salt aerosol.

5 Conclusions

The surface reaction of OH with chloride on sea salt aerosol was studied with a numerical box model focusing on the time evolution of freshly emitted sea salt particles. Several assumptions for the rate coefficients under different atmospheric conditions were investigated. A discussion of the kinetic limitations of this reaction showed that a unity reaction probability as previously assumed by Laskin et al. (2003) is too high as it ignores gas phase diffusion and a dependency on the chloride concentration and neglects a previous assessment of the rate coefficient Knipping and Dabdub (2002). The photolysis of NO₃⁻ as an *in situ* source for OH molecules in the particles could be shown to be unimportant for the delay in acidification.


Laskin et al. (2003) suggested that Reaction (1) might play a major role in the sulfur cycle in the MBL by delaying the acidification of sea salt aerosol and therefore allowing the very fast oxidation of S(IV) by O_3 to continue. This study showed that in model

ACPD

6, 3657-3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

EGU

runs with realistic rate coefficients for the surface reaction, the additional alkalinity was not sufficient to significantly increase the initial production of S(VI) in fresh sea salt particles.

Some unexpected features and feedbacks could also be observed in the model, like a step-wise acidification of larger sea salt particles and increase in the total amount of nss-S(VI) formed esp. for (unrealistically) high reaction rates for the surface reaction as this leads to an increase in gas phase chlorine which also oxidizes DMS and therefore increases the available amount of sulfur in the MBL.

Outside of polluted regions, where usually significant amounts of gas phase acidity are available anyways, the main product of chlorine reactions in the gas phase is HCI. This reduces the net effect of Reaction (1) on acidity and its main effect is a redistribution of acidity from aged to fresh sea salt particles.

In general, an increase in halogen compounds increases the cycling of sulfur in the MBL. If nss-S(VI) is formed in sea salt aerosol this will speed up the removal of sulfur to the ocean as the lifetime of sea salt aerosol is generally lower than that of sulfate aerosol (see e.g. von Glasow and Crutzen, 2004; Alexander et al., 2005).

One motivation behind the study by Laskin et al. (2003) was to resolve an apparent mismatch in SO_2 and nss-S(VI) between models and measurements which they tried to explain with the surface reaction of OH with CI $^-$. In the context of this study, uncertainties in the oxidation mechanism of DMS as e.g. highlighted by Lucas and Prinn (2002, 2005) and von Glasow and Crutzen (2004) or other halogen reactions like the oxidation of DMS by BrO (Toumi, 1994) or the aqueous phase oxidation of S(IV) by hypohalous acids (Vogt et al., 1996) are more likely to explain this mismatch (see also discussion in von Glasow et al., 2002b; von Glasow and Crutzen, 2004).

Acknowledgements. I want to thank P. Crutzen, B. Finlayson-Pitts, B. Keene, E. Knipping, S. Pechtl, M. Roeselová, R. Sander, and J. Thomas for helpful discussions and comments on the manuscript. This work was funded by the Deutsche Forschungsgemeinschaft (DFG): Emmy-Noether Junior Research Group MarHal, GL 353-1/1,2.

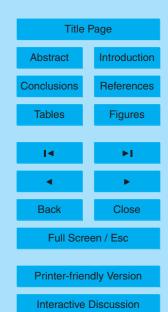
ACPD

6, 3657–3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

References


- Alexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yantosca, R. M., Savarino, J., Lee, C. C. W., and Thiemens, M. H.: Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes, J. Geophys. Res., 110, D10 307, doi:10.1029/2004JD005659, 2005. 3661, 3671
- Ayers, G. P., Bartley, S. T., Ivey, J. P., and Forgan, B. W.: Dimethylsulfide in marine air at Cape Grim, 41°S, J. Geophys. Res., 100, 21013–21021, 1995. 3665
 - Ayers, G. P., Cainey, J. M., Gillett, R. W., Saltzman, E. S., and Hooper, M.: Sulfur dioxide and dimethyl sulfide in marine air at Cape Grim, Tasmania, Tellus, 49B, 292 299, 1997a. 3665
 - Ayers, G. P., Granek, H., and Boers, R.: Ozone in the Marine Boundary Layer at Cape Grim: Model Simulation, J. Atmos. Chem., 27, 179–195, 1997b. 3665
 - Ayers, G. P., Gillett, R. W., Cainey, J. M., and Dick, A. L.: Chloride and Bromide Loss from Sea-Salt Particles in Southern Ocean Air, J. Atmos. Chem., 33, 299–319, 1999. 3665
 - Chameides, W. L. and Stelson, A. W.: Aqueous-Phase Chemical Processes in Deliquescent Sea-Salt Aerosols: A Mechanism That Couples the Atmospheric Cycles of S and Sea Salt, J. Geophys. Res., 97, 20565–20580, 1992. 3659
 - Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326, 655–661, 1987. 3659
 - Dang, L. X., Chang, T.-M., Roeselova, M., Garrett, B. C., and Tobias, D. J.: On NO₃⁻H₂O interactions in aqueous solutions and at interfaces, J. Chem. Phys., 124, 066101, 2006.
 - Finlayson-Pitts, B. J. and Pitts Jr., J. N.: Chemistry of the Upper and Lower Atmosphere, Academic Press, San Diego, 2000. 3668
 - Ghosal, S., Shbeeb, A., and Hemminger, J. C.: Surface Segregation of Bromine doped NaCl: Implications for the Seasonal Variations in Arctic Ozone, Geophys. Res. Lett., 27, 1879–1882, 2000. 3660
- Ghosal, S., Verdaguer, A., Hemminger, J. C., and Salmeron, M.: In Situ Study of Water-Induced Segregation of Bromide in Bromide-Doped Sodium Chloride by Scanning Polarization Force Microscopy, J. Phys. Chem. A, 109, 4744–4749, 2005. 3660
 - Gombosi, T. I.: Gaskinetic Theory, Cambridge University Press, 1994. 3663
 - Gregory, G. L., Merrill, J. T., Shipham, M. C., Blake, D. R., Sachse, G. W., and Singh, H. B.: Chemical characteristics of tropospheric air over the Pacific Ocean as measured during PEM-West B: Relationship to Asian outflow and trajectory history, J. Geophys. Res., 102, 28 275–28 285, 1997. 3665

ACPD

6, 3657–3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

- Hoffmann, M. R.: On the kinetics and mechanism of oxidation of aquated sulfur dioxide by ozone, Atmos. Environ., 20, 1145–1154, 1986. 3660
- Hoppel, W. A.: Nucleation in the MSA-water vapor system, Atmos. Environ., 21, 2703–2709, 1987. 3659
- Jungwirth, P. and Tobias, D. J.: Molecular Structure of Salt Solutions: A New View of the Interface with Implications for Heterogeneous Atmospheric Chemistry, J. Phys. Chem. A, 105, 10468–10472, 2001. 3660
 - Jungwirth, P. and Tobias, D. J.: Chloride Anion on Aqueous Clusters, at the Air-Water Interface, and in Liquid Water: Solvent Effects on Cl⁻ Polarizability, J. Phys. Chem. A, 106, 379–383, 2002. 3660
 - Keene, W., Pszenny, A., Maben, J., OHalloran, T., Wall, A., Kerkweg, A., and Sander, R.: Latitudinal variation in volatile and particulate inorganic halogens over the eastern North and South Atlantic Oceans, Geophys. Res. Abs., 7, 05 337, 2005. 3660
 - Keene, W. C. and Pszenny, A. A. P.: Comment on: Laskin et al., Reactions at Interfaces As a Source of Sulfate Formation in Sea-Salt Particles, Science, 303, 628a–628b, 2004. 3661
 - Keene, W. C. and Savoie, D. L.: The pH of deliquesced sea-salt aerosol in polluted marine air, Geophys. Res. Lett., 25, 2181–2184, 1998. 3660
 - Keene, W. C. and Savoie, D. L.: Correction to "The pH of deliquesced sea-salt aerosol in polluted marine air", Geophys. Res. Lett., 26, 1315–1316, 1999. 3660
- Keene, W. C., Pszenny, A. A. P., Maben, J. R., and Sander, R.: Variation of marine aerosol acidity with particle size, Geophys. Res. Lett., 29, doi:10.1029/2001GL013881, 2002. 3660
 - Keene, W. C., Pszenny, A. A. P., Maben, J. R., Stevenson, E., and Wall, A.: Closure evaluation of size-resolved aerosol pH in the New England coastal atmosphere during summer, J. Geophys. Res., 109, D23 307, doi:10.1029/2004JD004801, 2004. 3660
- Knipping, E. M. and Dabdub, D.: Modeling Cl₂ Formation from Aqueous NaCl Particles: Evidence for Interfacial Reactions and Importance of Cl₂ Decomposition in Alkaline Solution, J. Geophys. Res., 107, 4360, doi:10.1029/2001JD000867, 2002. 3663, 3664, 3670
 - Knipping, E. M., Lakin, M. J., Foster, K. L., Jungwirth, P., Tobias, D. J., Gerber, R. B., Dabdub, D., and Finlayson-Pitts, B. J.: Experiments and Molecular/Kinetics Simulations of Ion-Enhanced Interfacial Chemistry on Aqueous NaCl Aerosols, Science, 288, 301–306, 2000. 3660, 3663, 3664, 3669
 - Landgraf, J. and Crutzen, P.: An Efficient Method for 'On-Line' Calculations of Photolysis and Heating Rates, J. Atmos. Sci., 55, 863–878, 1998. 3662

6, 3657–3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

- Laskin, A., Gaspar, D. J., Wang, W., Hunt, S. W., Cowin, J. P., Colson, S. D., and Finlayson-Pitts, B. J.: Reactions at Interfaces As a Source of Sulfate Formation in Sea-Salt Particles, Science, 301, 340–344, 2003. 3660, 3661, 3664, 3666, 3670, 3671
- Laskin, A., Gaspar, D. J., Wang, W., Hunt, S. W., Cowin, J. P., Colson, S. D., and Finlayson-Pitts, B. J.: Reply to comments on: Laskin et al., Reactions at Interfaces As a Source of Sulfate Formation in Sea-Salt Particles, Science, 303, 628d, 2004. 3661, 3669
- Liu, D., Ma, G., Levering, L. M., and Allen, H. C.: Vibrational spectroscopy of aqueous sodium halide solutions and air-liquid interfaces: Observation of increased interfacial depth, J. Phys. Chem. B, 108, 2252–2260, 2004. 3660
- Lucas, D. D. and Prinn, R. G.: Mechanistic studies of dimethylsulfide oxidation products using an observationally constrained model, J. Geophys. Res., 107, doi: 10.1029/2001JD000843, 2002. 3671
 - Lucas, D. D. and Prinn, R. G.: Parametric sensitivity and uncertainty analysis of dimethylsulfide oxidation in the remote marine boundary layer, Atmos. Chem. Phys., 5, 1505–1525, 2005. 3671
 - Monks, P. S., Carpenter, L. J., Penkett, S. A., Ayers, G. P., Gillet, R. W., Galbally, I. E., and Meyer, C. P.: Fundamental Ozone Photochemistry in the Remote Marine Boundary Layer: The SOAPEX Experiment, Measurements and Theory, Atmos. Environ., 32, 3647–3664, 1998. 3665
- Monks, P. S., Salisbury, G., Holland, G., Penkett, S. A., and Ayer, G. P.: A seasonal comparison of ozone photochemistry in the remote marine boundary layer, Atmos. Environ., 34, 2547– 2561, 2000. 3665
 - Penkett, S. A., Jones, B. M. R., Brice, K. A., and Eggleton, A. E. J.: The importance of atmospheric oone and hydrogen peroxide in oxidising sulphur dioxide in cloud and rainwater, Atmos. Environ., 13, 123–137, 1979. 3660
 - Pszenny, A. A. P., Moldanova, J., Keene, W. C., Sander, R., Maben, J. R., Martinez, M., Crutzen, P. J., Perner, D., and Prinn, R. G.: Halogen cycling and aerosol pH in the Hawaiian marine boundary layer, Atmos. Chem. Phys., 4, 147–168, 2004. 3660
 - Riley, J. P. and Skirrow, G.: Chemical Oceanography, Academic Press, London and New York, 1965. 3659
 - Salvador, P., Curtis, J. E., Tobias, D. J., and Jungwirth, P.: Polarizability of the nitrate anion and its solvation at the air/water interface, Phys. Chem. Chem. Phys., 5, 3752–3757, 2003. 3669 Sander, R., von Glasow, R., and Crutzen, P. J.: Comment on: Laskin et al., Reactions at

6, 3657–3685, 2006

OH + Cl⁻ surface reaction

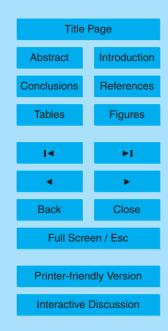
R. von Glasow

- Interfaces As a Source of Sulfate Formation in Sea-Salt Particles, Science, 303, 628c, 2004. 3661
- Schwartz, S. E.: Mass-Transport Considerations Pertinent to Aqueous Phase Reactions of Gases in Liquid-Water Clouds, in: Chemistry of Multiphase Atmospheric Systems, edited by: Jaeschke, W., NATO ASI Series, Vol. G6,415–471, 1986. 3663
- Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, John Wiley & Sons, New York, Chichester, Weinheim, 1998. 3659, 3662
- Sievering, H., Boatman, J., Galloway, J., Keene, W., Kim, Y., Luria, M., and Ray, J.: Heterogeneous sulfur conversion in sea-salt aerosol particles: The role of aerosol water content and size distribution, Atmos. Environ., 25A, 1479–1487, 1991. 3660
- Singh, H. B., Gregory, G. L., Anderson, B., Browell, E., Sachse, G. W., Davis, D. D., Crawford, J., Bradshaw, J. D., Talbot, R., Blake, D. R., Thornton, D., Newell, R., and Merrill, J.: Low ozone in the marine boundary layer of the tropical Pacific Ocean: Photochemical loss, chlorine atoms, and entrainment, J. Geophys. Res., 101, 1907–1917, 1996. 3670
- Toumi, R.: BrO as a sink for dimethylsulphide in the marine atmosphere, Geophys. Res. Lett., 21, 117–120, 1994. 3671
- Vogt, R., Crutzen, P. J., and Sander, R.: A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer, Nature, 383, 327–330, 1996. 3660, 3671
- von Glasow, R. and Crutzen, P. J.: Model study of multiphase DMS oxidation with a focus on halogens, Atmos. Chem. Phys., 4, 589–608, 2004. 3659, 3660, 3662, 3665, 3667, 3671
- von Glasow, R., Sander, R., Bott, A., and Crutzen, P. J.: Modeling halogen chemistry in the marine boundary layer. 1. Cloud-free MBL, J. Geophys. Res., 107, 4341, doi: 10.1029/2001JD000942, 2002a. 3662
- von Glasow, R., Sander, R., Bott, A., and Crutzen, P. J.: Modeling halogen chemistry in the marine boundary layer. 2. Interactions with sulfur and cloud-covered MBL, J. Geophys. Res., 107, 4323, doi:10.1029/2001JD000943, 2002b. 3660, 3662, 3671
- Wingenter, O. W., Kubo, M. K., Blake, N. J., Smith Jr., T. W., Blake, D. R., and Rowland, F. S.: Hydrocarbon and halocarbon measurements as photochemical and dynamical indicators of atmospheric hydroxyl, atomic chlorine, and vertical mixing obtained during Lagrangian flights, J. Geophys. Res., 101, 4331–4340, 1996. 3670
- Wingenter, O. W., Blake, D. R., Blake, N. J., Sive, B. C., Rowland, F. S., Atlas, E., and Flocke, F.: Tropospheric hydroxyl and atomic chlorine concentrations, and mixing timescales determined from hydrocarbon and halocarbon measurements made over the Southern Ocean, J.

6, 3657–3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

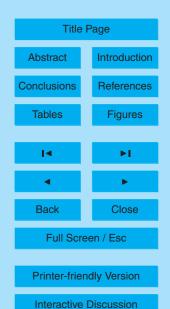

Geophys. Res., 104, 21819–21828, 1999. 3670
Woodcock, A. H., Kientzler, C. F., Arons, A. B., and Blanchard, D. C.: Giant Condensation Nuclei from Bursting Bubbles, Nature, 172, 1144–1145, 1953. 3658

ACPD

6, 3657-3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

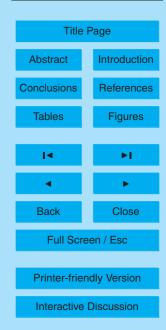

Table 1. Initial mixing ratios of gas phase species (in nmol mol⁻¹; OH concentration in molec cm⁻³).

species	coastal	remote MBL	Southern Ocean
O ₃	43.0	18.0	12.0
OH	7.5×10 ⁶	3.4×10 ⁶	3.7×10 ⁶
NO_x	0.145	0.004	0.0016
HNO_3	0.11	0.0011	0.0001
PAN	0.08	0.001	0.01
NH_3	0.11	0.1	0.1
H_2O_2	0.9	0.235	0.14
SO_2	0.1	0.085	0.07
H_2SO_4	0.0008	0.0003	0.0002
DMS	0.08	0.11	0.12
CH_4	1700.0	1700.0	1670.0
CO	190.0	68.0	44.0
C_2H_6	1.4	0.5	0.23
HCHO	0.36	0.12	0.13
HCI	0.34	0.025	0.01

6, 3657-3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

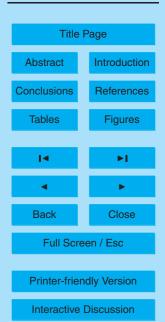

Table 2. Duration of the acidification in the "mono-disperse" sea salt aerosol bin for case 1 for all scenarios and time lag of acidification of cases 2–4 compared to case 1 (in minutes).

radius		coastal	remote MBL	Southern Ocean
0.1 μm	case 1: acidification	3	3	4
	case 2: time lag	<1	<1	<1
	case 3: time lag	<1	<1	<1
	case 4: time lag	<1	<1	<1
	case 5: time lag	<1	<1	<1
$0.6\mu m$	case 1: acidification	4	10′	12
	case 2: time lag	<1	<1	<1
	case 3: time lag	<1	<1	<1
	case 4: time lag	<1	<1	<1
	case 5: time lag	<1	<1	2
$1.0 \mu \mathrm{m}$	case 1: acidification	6	17	23
	case 2: time lag	<1	<1	<1
	case 3: time lag	<1	<1	1
	case 4: time lag	<1	<1	<1
	case 5: time lag	<1	1	2
$5.0 \mu m$	case 1: acidification	65	210	245
	case 2: time lag	<1	<1	<1
	case 3: time lag	1	5	6
	case 4: time lag	<1	<1	<1
	case 5: time lag	5	18	21

6, 3657-3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

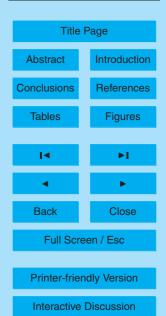

Table 3. Relative increase of the production of nss-S(VI) during the particle acidification in the "mono-disperse" sea salt particle bin for cases 2–5 compared to the run without the surface reaction (case 1). Note, that the amount of nss-S(VI) in $5.0\,\mu m$ aerosols is only 10% of that in particles with radii of 0.6 and $1.0\,\mu m$.

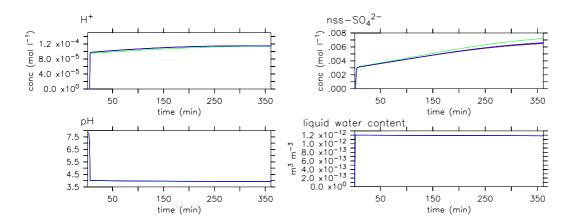
radius		coastal	remote MBL	Southern Ocean
0.1 μm	case 2	0%	0.7%	1.0%
	case 3	0%	0.8%	1.5%
	case 4	0%	1.9%	3.2%
	case 5	0%	6.5%	9.0%
$0.6\mu{\rm m}$	case 2	0.1%	0.2%	0.3%
	case 3	0.5%	0.9%	1.3%
	case 4	0.2%	0.3%	0.5%
	case 5	3%	4.0%	6.0%
$1.0\mu \mathrm{m}$	case 2	0.1%	0.2%	0.3%
	case 3	0.1%	1.1%	2.0%
	case 4	0.2%	0.3%	0.4%
	case 5	3%	4.5%	6.0%
$5.0 \mu \mathrm{m}$	case 2	0.8%	0.1%	0%
	case 3	1.8%	2.2%	2.0%
	case 4	0.2%	0.1%	0%
	case 5	9.0%	11%	9.0%

6, 3657-3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow


Table 4. Maximum relative difference in gas phase Cl₂ and Cl as compared to the respective run without the surface reaction (case 1).


radius		coa	coastal		remote MBL		Southern Ocean	
		ΔCl_2	ΔCI	ΔCl_2	ΔCI	ΔCl_2	ΔCI	
0.1 μm	case 2	26%	1.3%	3.8×	1.6%	8.5×	3.4%	
	case 3	2.2×	7.0%	14×	7.0%	37×	15.5%	
	case 4	3.6×	14.0%	24×	13.0%	29×	7.0%	
	case 5	13×	65.0%	110×	62.0%	205×	70.0%	
$0.6\mu{\rm m}$	case 2	37%	1.2%	5.0×	1.4%	10.4×	4.2%	
	case 3	3×	7.0%	22×	7.7%	48×	19.0%	
	case 4	5.5×	14.0%	36×	12.8%	35×	7.5%	
	case 5	23.5×	70.0%	185×	65.0%	260×	85.0%	
$1.0\mu\mathrm{m}$	case 2	37%	1.2%	4.7×	1.4%	10×	4.0%	
	case 3	3×	7.0%	23×	7.8%	48×	18.5%	
	case 4	5.5×	14.0%	36×	13.0%	34×	7.4%	
	case 5	23.5×	70.0%	185×	65.0%	260×	85.0%	
$5.0\mu\mathrm{m}$	case 2	35%	1.1%	4.7×	1.3%	9.4×	3.7%	
	case 3	2.85×	8.0%	21×	7.2%	45×	17.0%	
	case 4	5.5×	15.0%	36×	12.8%	34×	7.0%	
	case 5	23×	70.0%	180×	65.0%	245×	78.0%	

6, 3657-3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

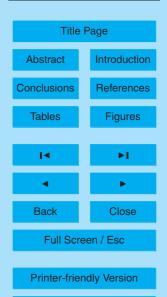
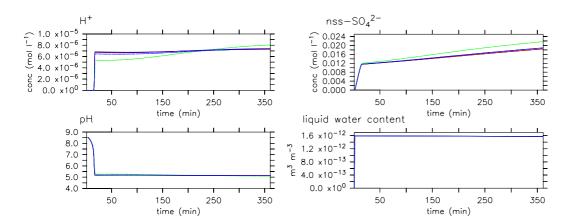


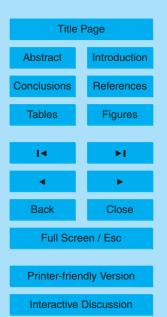
Fig. 1. Temporal evolution of the concentrations of H^+ and S(VI) as well as the pH and liquid water content for scenario "coastal" in the "mono-disperse" particle bin for $r=1~\mu m$. Case 1- black, solid line, case 2- red, dashed line, case 3- blue, dotted line, case 4- blue, solid line, case 5- green, dash-dotted line. Note, that most lines except for case 5- overlap. The abscissa is time since model start in minutes.

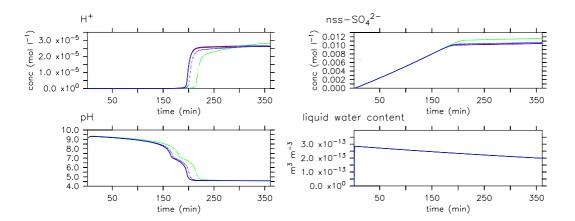

6, 3657-3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

EGU

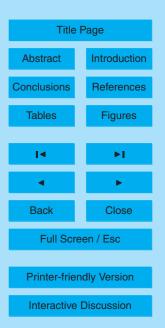


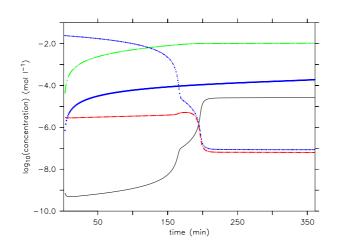

Fig. 2. Same as Fig. (1) but for scenario "remote MBL" in the "mono-disperse" particle bin for $r=1 \mu m$.

6, 3657-3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

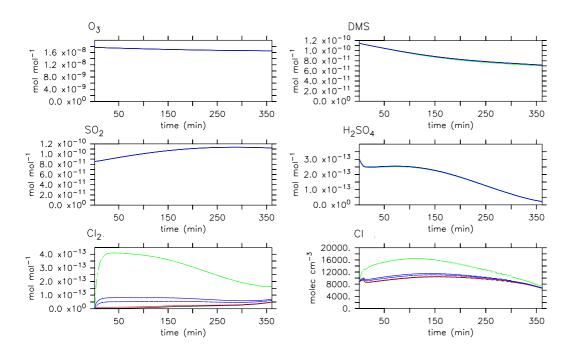



Fig. 3. Same as Fig. (1) but for scenario "remote MBL" in the "mono-disperse" particle bin for $r=5 \mu m$.

6, 3657-3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow


Fig. 4. Temporal evolution of the concentrations of H⁺ (black, solid line), HCO $_3^-$ (blue, dotted line), S(IV) (red, dashed line), S(VI) (green, dash-dotted line), and NO $_3^-$ (blue, thick solid line) in run "remote MBL", case 1, r=5 μ m. The abscissa is time since model start in minutes.

6, 3657-3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

Fig. 5. Temporal evolution of the most important gas phase compounds for scenario "remote MBL". Case 1 – black, solid line, case 2 – red, dashed line, case 3 – blue, dotted line, case 4 – blue, solid line, case 5 – green, dash-dotted line. Note, that most lines except for Cl_2 and Cl overlap. The abscissa is time since model start in minutes.

6, 3657-3685, 2006

OH + Cl⁻ surface reaction

R. von Glasow

EGU